Let us now calculate the relative bond strength in the case, for example, of chromium
powder deposited on iron (or between chromium and iron powders sintered together) at a con-
tact temperature of 900°K. Considering that the diffusion coefficient D, for vacancies in
iron (D+) and chromium (D ) is Dy, ~Do. exp (—BH{.R™*T~') [3] (Do being a preexponential
factor, AHY denoting the enthalpy of vacancy movement, related to the energy of diffusion
activation E through the near-equality AHY~ 27'E, and R denoting the universal gas constant),
with Do+ = 1.8107° m?*/sec, Do- = 1.5¢10"° m /sec Ey = 2.71#10° kJ/kmole, and E— = 2.21-10°
kJ/kmole {3, p. 39, n ~ 1.5 and ay = a_ . 2.5¢ 10"1° m [4], and t ~ 107° sec (effective time
of interaction in the contact region), we obtain with the aid of the table of probability
integral [5, p. 129] ¢ = goo' ~ 0.8 for the relative bond strength. Assuming that o, is
equal to the adhesion energy for iron and chromium [6, p. 597], we obtain for the absolute
bond energy o ~ 3.47 J/m®.

NOTATION

c, concentration of diffusible substance; x, coordinate normal to the boundary; t, time;
D, diffusion coefficient; e, relative bond strength (energy); E, energy of diffusion activa-
tion; T, temperature; and H, enthalpy.
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HEAT AND MOISTURE EXCHANGE OF NEWLY DENUDED ROCK MASSIF
WITH A CHAMBER OF AN UNDERGROUND BUILDING

0. A. Kremnev, V. Ya. Zhuravlenko, UDC 536.24:539.217.2
V. A. Shelimanov, and E. M. Kozlov

The article presents formulas describing the fields of temperature and potential
of moisture transfer in a massif, and also the dependences for calculating the
heat and moisture flow from the massif into the air.

Exhausted underground spaces are widely used at present as stores, production spaces
and premises for medical treatment, etc., and it becomes necessary to maintain certain tem-
perature and moisture conditions in them. These disused workings very often have the shape
of polyhedrons: parallelepipeds, prisms, etc. Existing methods of temperature and moisture
calculation of cylindrical excavations [1, 2] cannot be used in similar cases. It is there-
fore expedient to examine the processes of heat and moisture exchange of air and a semi-
bounded massif through a plane surface (wall).

It is known [2] that the processes of heat and mass exchange attain their greatest in-
tensity in a newly denuded massif when the bulk of the moisture enters the air upon evapora-
tion from the walls. In that case it may be assumed that the criterion of phase transforma-
tion in the massif is close to zero (¢ ~ 0) and the differential equation of heat and moisture
transfer had the form [3]
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If we denote the mean values of the dimensionless temperature and potential of moisture
transfer T(l, 1), V(1, 1), then we may 1ntroduce a, qu, the reduced heat exchange and Biot
coefficients by the formulas

- v,y s -
o = a{l - — ZL—T—)— . Biy = axe/7, )
a T(1, 7) J

which enables us to write conditions (3) in the form
ar(, o

Ox

Furthermore, applying the Laplace—Carson transformation [4] to Eqs. (1) with the conditioms
(2), (&), (8), we obtain expressions of the dimensionless temperature and potential of mois-
ture transfer

—Bi,T(1, 1) + Big - D'x, =0. (8)
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We find the coefficients of nonsteady heat and mass exchange by the formulas [2]
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Using (4), (8), (9), and (10), we write
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The dependence (12), (13) enable us to calculate the flows of heat and moisture by the
formulas

g=k;((s—1t5). m=m; (6 —0,), (19)

where kT = ZkTiFi/ZFi’ m = ZmTiFi/EFi are the mean values on all the sides.

NOTATION

X, dimensional coordinate; xo, characteristic dimension, half the distance between
opposite sides of the chamber; x = x/X,, dimensionless coordinate; t(x, 1), temperature of
the massif; to, tg, temperature of the air and of uncooled soils; 6(x, t), potential of
moisture transfer; 6s, Op, its value in the bulk of the massif and its equilibrium value,
respectively; cq, cT, specific heat and moisture capacity, respectively; A, Ap, heat and
moisture conductivity, respectively; aq = A/cqYo, thermal diffusivity; ap = Ap/cTyo, potenm-
tial conductivity of moisture transfer; r, specific heat of phase transition; e, criterion
of phase transformation (0 < ¢ = 1); §, Soret coefficient; o, heat-exchange coefficient; B8,
mass-exchange coefficient.
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